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We propose a synthesis method for the parameter group of discrete vibrational 
systems, ensuring the maximal compression of the natural Frequency spectrum. 
We give a method for solving two problems: (1) for a specified spectrum and 
definite part of the parameters find the values of the remaining parameters so 
that the lowest frequency would occupy the given position on the number axis 

and that the ratio of the highest frequency to the lowest would be minimal ;(2) 
for a specified vibrational system obtain a system with maximally compressed 
spectrum at the expense of optimal vibration of a definite group of parameters. 
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We examine discrete vibarational systems with m degrees of freedom, whose amplitude 
equations are described by a generalized amplitude equation [l] of the form 

Dux I= l&Ax (1) 

Here U = ful, us, . . ., u,) is the vector of first physical ~rameters, x = (xi, $s, 
. . ., 5,) fs the oscillation vector of generalized form, p is an eigenvalue of the ge- 
neralized amplitude equation (the square of the generalized natural frequency of the 
vibrational system), D is a linear operator taking an arbitrary k -dimensional vector 
b=(b,, 4, . . ., b&j into a k-th-order diagonal one: Db I= d&g (b,, b,, . . ., 
h), A = II Aij lllm * IS a matrix determined by the structure of the vibrational system 
and by the vector of second physical parameters, We assume that matrix A possesses 
the following properties : 

1”. Afj = Aji, iy j z I, 23 * * sy 732 
2”. Aij > 0, i, i z 1, 2, a e *, 712 
3”. An integer k exists such that all elements of matrix A” are strictly positive. 
4”. (AT, Z) > 0, where z = (ti, TV, . . ., a,) is an arbitrary m-dimensional 

vector_ 
5’. There exists a vector of sign aiternations [ 1~ 

Y = ((-l)Pi, (- 1)Pt, * ‘ .) (- 1pg 

where (pi)i”’ is some collection of primes, such that the matrix DvA -LDv possesses 
the above-listed properties of matrix A. 

It can be shown, using Perron’s theorem [ 21, that the smallest pr. and the largest pnl 
eigenvalues of Eq, (1) are positive and are the simple roots of the characteristic equa- 
tion J DU - pii 1 = 0, while the eigenvectors xi and x,of Eq, (1) corresponding 
to them satisfy the inequalities 

x1 > 0 (2) 

Dvx, > 0 (3) 

It should be noted that in mechanical systems the group of first physical parameters 
can be made up either from the rigidity (pliabili~) of the eleastic elements or of the 
time lag (mobility) of the inertial elements of the vibrational system. The group of se- 
cond physical parameters is here made up from the time lag (mobility) or the rigidity 
(p~abili~), respectively. Here, by the mobility of an inertial element we mean a quan- 
tity inverse to its time lag, For the vibrational systems being examined, a number of 
problems have been solved of synthesizing their parameters under constraints imposed 
both on the spectrum of the vibrational system as well as on the values of the parameters 
1;7- 5] _ Below we present a solution of the problems of selecting the first physical para- 
meters of a vibrational system, ensuring a maximally compressed spectrum. 

Problem 1. Given the structure of a vibrational system and the vector of second 
physical parameters. Obtain the vector of first physical parameters, for which the smal- 
lest generalized natural frequency occupies a specified position on the number axis and 
the ratio of the largest frequency to the smallest is minimal. 

Peoblem 2. Given the original vibrational system. Obtain, by a minimal change 
in the vector of first physical parameters, a system having a maximally compressed Spec- 
trum. 
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The following theorem shows that Ptoblem 1 is the main one, since its solution deter- 
mines the solution of Problem 2. 

Theorem 1. An increase of all the coordinates of vector u by p times (p > 0) 
does not change the natural forms of the generalized amplitude equation, but leads only 
to a torsional increase of all the eigenvalues by p times. 

From Theorem 1 it follows that the first eigenvalue pl can be led by an appropriate 
proportional change of all the coordinates of the vector of first physical parameters. to 
a specified position on the number axis without changing the ratio pm / pi. Thus, if 
Problems 1 and 2 have been solved for vibrational systems of like structure and like vet; 
tor of second physical parameters, then their solutions are collinear 

u, = puo, P>Q 

Here u, is a solution of Problem 2 when vector r is the original vector of first physical 
parameters, Us is a solution of Problem 1 when pr = a. The collinearity factor p is 
easily determined from the condition that the length of the discrepancy vector (u, - r) 
be a minimum 

P = (r, ~4 /(u,, u,) 

We proceed to the solution of Problem 1. Having fixed the structure and the vector 
of second physical parameters of a vibrational system, we change the vector u. The ei- 
genvalues of Es. (I) will be changed here. We multiply both sides of Es. (I) scalarly by 
x and we find 

1” o-4 = Pux W? x (UN / (Ax WY x w (4) 

Vector u can be changed such that one of the eigenvalues of Eq. (1) retains its own va- 
lue, equal to a (a > 0). The set 

Lcz = {u I p (u) = a, u > 0) 

is called the complete equifrequency surface. We note the following interesting peculia- 
rity of the complete equiiiequency surface. The vector defined by the relation 

n = Dx,x, (5) 
where x, is the natural form of the equation Du,x, = aAx,, is normal to surface L, 
at the point u = u,. In fact, L, is the level surface of the function p= ‘~1 (u), u > 0 ; 
therefore, the normal drawn at an arbitrary point u E &is collinear to the gradient 
V p (u) at the given point. From Eqs. (1) and (4) we obtain 

dp = (Dxx, du)/(Ax, x) (9) 
Then the gradient’s value at point n = u, is 

vp (u,) = Dxsx,/(.4x,3 xJ 

We obtain relation (5) by setting the collinearity coefficient equal to (Ax,, x,) . The 
complete equifrequency surface is a generalization of all equifrequency surfaces corre- 
sponding todifferent numbers of eigenvalues 

&a = C Lc, 
k=l 

J&k = @If%(u) =% u>O) 

Theorem 2. The equifrequency surface La, 1 is defined by the parametric equa- 

u= aDz-'AZ (7) 
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where z = (zl, zs, . . ., z,) ranges over the orthant z > 0. The vector Dzz is 
normal to the given surface. 

The theorem’s validity follows from Eq, (1) and relations (2) and (5). The vector U, , 

being a solution of Problem 1, belongs to L,, 1 and satisfies the equality 

Pm W = (“glint! c1, (4 (8) 
“a, 

Theorem 2 allows us to pass from the problem of finding the conditional extremum (8) 
to the problem of finding the usual extremum 

kn @A == {FZ Pm @ 04 

The necessary parameters of the vibrational system at the srationa~ point of function 

Pm = pm (z) are denoted by u*, xmot z’, pm’. These parameters are connected by the 
relation 

Vpm (2”) = 0 (9) 
The equality 

du = Dz-"[aA - Dujdz 00) 

follows from (7) for a point sliding along the surface La, 1 . Using relations (6) and (lo), 
we obtain 

Thus, 
~~~~2~ = @id - ~u]~~-=~x~x~l (Ax,, x,,,) 

and Eq. (9) is transformed to the form 

[ad - LAP] y" = 0, ya = ~~~-~~x~x~ (11) 

~quaIi~ (II) can be achieved only on a vector y” collinear to z’. Setting yv = z’, 
we obtain the dependency between the first and the m-th forms of the oscillations at 
the stationary point L)z”z” = .Dx;x; (12) 

Ineq~li~ (3) allows us to ~ansform relation (12) to 
0 

x m = DvzO (131 

It can be shown that. the fiction &, = pm (2) reaches the greatest lower bound at 
the stationa~ point z” . Thus, U, = u”. EquaIity (12) denotes the tangency of the 
equi~equen~ surfaces 1;,, 1 and LB, m at the point u = u”. where 8 = pm (2”) , 
Tnerefore, point u” satisfies the equations 

D$z” = aAz”, 0$x; = pdx" 

Using these equation and relation (13). we obtain the eq~tion for finding z” and p 

adz’= ~~vd~v~', z">o 041 

Let B = DvA -1Dvd 1 then one of the solutions of the equation 

Bz == hz 0 5) 
determines a solution of Eq, (14). 

We note the following properties of matrix B, folio~ng from its definition. 
1) Matrix B is similar to a symmetric matrix. In fact, B== Amair tA”“DvA -‘DVA”‘I A”s* 
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2) The elements of matrix B are nonnegative, but an integer k exists such that all 
elements of matrix Bk are strictly positive, Indeed. matrix B is the product of two 
matrices DvA-‘Dv and A possessing the same property. 

3) DvB-“Dv = B 
4) (Bz, z) > 0, z + 0, since the product of the positive-definite matrices 

DvA -lDv and A is a positive-definite matrix, 
From the first proper9 of matrix B it follows that all its eigenvalues are real, The 

second property signifies that Perron’s theorem is applicable to matrix B, i.e. to its 
largest eigenvalue h,, being a simple root of the characteristic equation 

( hE - B 1 = 0 (16) 

there corresponds an eigenvector with positive coordinates. This vector is a solution of 
Eq. (14). Here fJ = a&. Properties 3 and 4 signify that matrix B has a spectrum sym- 
metric relative to unity. This allows us, at Ieast, to lower the order of Eq. (16) by not 
less than twice. For odd m the right-hand side of this equation contains the factor (3\ -1) 
whose elimination reduces the order of the equation to an even one. For an Eq, (16) of 
even order a transition to the variable o defined by the equality o = (h2 + 1)/2h 
reduces the equation’s order by two times. 

Example 1. We consider the solution of Problem 1 for a vibrational system with 
two degrees of freedom. -It should be noted that because of the conditions 2”- 4’ imposed 
on the matrix of the generalized amplitude equation the matrix A of the vibrational 
system with two degrees of freedom is always oscillatory. Condition 5’ is superfluous in 
this case since it follows from the preceding conditions. Here Y = (1, -1) (or v=(-1, 

IhE-Bl==k*-- A* = All&a f A12-421 

Solving characteristic Eq. (16). we obtain 

3.2 = A+“,‘A_D, A> = Y-Adm f f/Ax 

QAfi 

Fig. 1 
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S~stituting the value of & into Eq. (15). we find vector a0 

2’ = v’i; (i,“i/z, I/ Y’x) 

It is convenient to select the value of the scalar factor p from the condition@ z”,zo).=i 

P z= JfAnA22/2A+’ 

Then, the parameters of the vibrational system with a maximally compressed spectrum 

are determined by the relations 

The results obtained can be interpreted geometrically. Figure 1 shows the complete 

equifrequency surface L, and the equifiequ - 

ency surface Lp,3. L, is the hyperbola 

(Ul - a A,,) (US - a A,,) = a8 A,, A sl 

The point u” is the point of tangency of sur- 

faces L,,, and L,,s. 

Example 2. Let us consider a chain vib- 
rational system with m degrees of freedom, 

whose structure is shown in Fig. 2. The elastic 

Fig. 2 elements are denoted by arrows, the inertial 
ones by circles. The directions of the arrows 

determine the positive defamation of the resending elastic elements, An example 
of such a vibrational system is the mechanical model of a drive with the (m - 1) -st 

working machine performing small torsional (longitudinal) oscillations. 

Setting the square of the smallest natural frequency of the given vibrational system 

equal to a, we obtain the solution of Problem 1 by a variation of the rigidities of the 

elastic elements. We operate with the second inverse form of the amplitude equation, 
which satisfies all the requirements of Eq. (1). Here the quantities in Eq. (1) are defined 

thus: u is the vector of rigidities, x is the form of deformation of the elastic elements, 

p is the square of the vibrational system’s natural frequency 

JO .Tz Js. . 'J, J = (JI, Je, . . . J,f 

J3 Jz O.+.o 

A=: 53 0 J3. . .o , J,,=i Ji 
. . . . . * . * . i=l 

J, 0 O...J, 

Here J is the vector of time-lags, Jo is the total time-lag of the vibrational system. 
Matrix A is non~cillato~.when m > 2 , According to El], v = (I, -1, -i, . . . . -1) 

and 
k hl hl . . . hl 

hl hl+ h3 hl . . . hl 

DvA-lDv z h1 h1 
hl + h3 . . . hl 

* . . . . . . . . * . . . . . . * * 

hl hl hl . . . hl+h, 

h = (hl, $3 s**, h,), hi = Ji-l, i = $7 29 *.*f m 
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Here h is the vector of mobilities, Thus, setting a = 2bJo - 1, we obtain 
a 2hJz 2hiJa . . . 2i4rJ, 

a + 1 2hlJ% + 1 2h1Ja . . . ZhrJ,,, 

Bz a-I-1 2hlJ2 2.ws+fl . . . 2kJ, 

. . . . . . . . . . . . . ..I....... 

a+ z 2h1J2 2h1Js . . . 27h1.J~ $ 1 

Having determined the roots of Eq. (16) 

I.l==cl-- J&“-_, a*=5 ~=...=Anr,=I, &,=a+ r/F= 

we substitute the value of h, into Eq. (15). Born the set of its solutfons we select 

2” =: u-l (V--- a-t_I’ 
1, 1,. . *, I 1 

Using relation (7), we obtain the desired solution 

Here 

The squares of the natural frequencies of the vibrational system obtained have the fol- 
lowing values 

&=a, P%==P3=...=~,-l==a~, ~=a(a+ yr(l,,i) 

The method presented answers the question of how concentrated masses should be fixed 
on a weightless homogeneous freely-suppcrted beam in order to have a compressed spec- 
trum. For example, a vibrational system consisting of such a beam with three masses 
ml, mz and rn3 positioned symmetrically has a compressed spectrum if 

Here & is the distance of mass mt (ms) from the nearest end of the beam and C is the 
beam’s length. 
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